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Abstract 

Multiple simultaneous Bragg diffraction effects of 
X-rays in quaternary III-V liquid-phase epitaxial thin 
layers are investigated with both photographic and 
counter detection methods. For the photographic 
investigation, a divergent source is used. The geometric 
aspects of this type of diffraction, affected by lattice 
mismatch between epitaxial layers and substrates, are 
discussed for cases involving five-, six- and eight-beam 
reflections. The lattice mismatches in directions parallel 
and perpendicular to the interface normal of InGaAsP/ 
InP, determined from a single divergent-beam photo- 
graph, are obtained. For the counter detection study, a 
collimated incident beam and several single and double 
heterojunction samples, with large lattice mismatches 
are used. A kinematical treatment for a general n-beam 
diffraction, from double- and triple-layer systems, is 
derived to account for the measured intensities. 

Introduction 

Although the photographic investigation and the 
counter detection of multiple X-ray diffraction effects 
in single crystals were reported in the late 1930's by 
Kossel (1936) and Renninger (1937), respectively, 
simultaneous Bragg diffraction did not receive proper 
attention until about 1960. Since then, extensive studies 
on this subject have been carried out by many 
investigators. These include Cole, Chambers & Dunn 
(1962), Moon & Shull (1964), Zachariasen (1965), 
Caticha-Ellis (1969), Prager (1971), Post (1975b), 
Unangst & Melle (1975), Hess (1975), Cousins, 
Gerward & Staun Olsen (1978) and many others. All 
these works were devoted to the discussion of the 
geometry and the intensities of simultaneous Bragg 
diffraction effects in bulk single crystals. No investi- 
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gations have been made on these effects in epitaxial thin 
films. In this article we report our investigations on the 
geometry and intensity aspects of simultaneous Bragg 
diffraction effects in III-V liquid-phase epitaxial (LPE) 
thin films. 

The samples under study in this paper are In1_ x- 
GaxA%Pl_y LPE thin films deposited on an InP 
substrate, where x and y are gallium and arsenic 
concentrations in the solid composition, respectively. 
InGaAsP materials are usually in the form of single 
crystals. Their lattice constants vary with the gallium 
and arsenic concentrations, X~a and XAts in the liquid 
phase, or the corresponding x and y concentrations in 
the solid phase. The growth conditions and charac- 
terizations of InGaAsP/InP heterojunctions can be 
obtained from the articles of Antypas & Moon (1973) 
and Nakajima, Kusunoki, Akita & Kotani (1978). Two 
experiments were carried out. One used the high- 
resolution divergent-beam method (Chang, Patel, 
Nannichi & Prince, 1979) to show how multiple diffrac- 
tion images vary with small lattice mismatch between 
the epitaxial thin layer and substrate. Samples of single 
hetero-junction (SH) with small lattice mismatch were 
employed. The other experiment used a collimated 
incident beam and a detector to measure the reflected 
intensities of multiple diffractions from single (SH) and 
double heterojunction (DH) samples. The lattice 
mismatches of these samples were one order of 
magnitude higher than those for the divergent-beam 
experiment. Based on Moon & Shull's (1964) treat- 
ment, a kinematical theory for multiple X-ray diffrac- 
tions from multi-layer systems was derived to account 
for the measured intensities. 

According to Oe, Shinoda & Sugiyama (1978), 
[001] InGaAsP materials possess tetragonal unit cells 
owing to small differences between Aa± and Aa~,. Aa± 
and Aa,, are equal to a± - as and a,, - a s, where a s, a± 
and a,, are the lattice constants of the InP substrate and 
of the epi-layer in the directions normal and parallel to 
the interfacial plane. The geometry in reciprocal-lattice 
space of simultaneous Bragg diffractions is then 
affected by Aa, and Aa±. This is discussed below in 
comparison with the InP cubic cases. 

© 1981 International Union of Crystallography 
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G e o m e t r y  

Multiple diffraction occurs when several reciprocal- 
lattice points are simultaneously brought onto the 
surface of the Ewald sphere to diffract an incident 
X-ray beam. It can be achieved systematically, 
according to Renninger (1937), by first placing the 
crystal so as to have a two-beam reflection, the 
so-called primary reflection, and then by rotating the 
crystal around the reciprocal-lattice vector of the 
primary reflection to bring other reciprocal-lattice 
points onto the Ewald sphere, thus obtaining the 
secondary reflections. Fig. 1 shows the geometry in 
reciprocal space. P and H are the reciprocal-lattice 
vectors for the primary and secondary reflections. H,, 
and I-Ip are the components of H normal and parallel to 
P. The radius of the Ewald sphere is 1/2, where 2 is the 
wavelength of the X-rays used. Following Cole et al. 
(1962), the angle ,6, between H,, and the plane of 
incidence, p, of the primary reflection is given as 

cos f l=[HZ-HvPl / [2Hn(1 /22 -p2 /4 ) I /2 ] .  (1) 

The azimuthal rotation angles q~ around P from a 
reference vector, V, initially lying in the plane of 
incidence p, perpendicular to P, are 2' - fl and 2' + fl for 
the in-coming and out-going positions, respectively. 2' is 
the angle between V and H,. For [001] InGaAsP 
compound layers (1) can be written as 

cos f l=  a~ + a~ 2 a 2 

x 22 4a[ (2) 

if the primary reflection is 001 and the secondary 
reflection hkl. Let us call /~0 the angle for a given 
multiple diffraction from the InP substrate. For small 
variations of Aa± and Aa,, in the quaternary materials, 
the deviation, A/~, from ¢~0 can be determined as 

Aft= [(h 2 + k 2) Aa,. + (l 2 -  IL) da±] 

x as[h z + k2]-1/2[ 1 / 2 -  L2/4aZs]-L (3) 

This means that for nonzero Aft a higher-order multiple 
simultaneous diffraction from a cubic lattice can be 
decomposed into a number of lower-order reflections of 
a tetragonal lattice. For instance, a six-beam case may 
be decomposed into two four-beam cases. We will now 
consider the following three interesting cases: 

(A) Five-beam, 000, 006, 333, 111, 115, ease 

The five-beam simultaneous Bragg diffraction of InP 
in reciprocal space is shown in Fig. 2. As a,, and a± 
vary, the five reciprocal-lattice points can no longer be 
brought onto the Ewald sphere simultaneously during 
the rotation about [006]. The five-beam case is 
decomposed into three-beam, 000, 006, 333, and 

Secondary reflection 

Incident X-ray ~ Primary 
ection 

1 1 
i ,Ni,' !v 

OUT' 
Fig. 1. Geometry of multiple diffraction in reciprocal space. The 

lower figure is a projection of the upper one on the plane 
perpendicular to the plane of incidence, p, of the primary 
reflection. 
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Fig. 2. Projections of  the five-beam case on the plane per- 
pendicular to the plane of  incidence P5 of  006 and on the plane 
containing the five reciprocal-lattice points. 
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Fig. 3. Calculated azimuthal angles ~0 v s  a I in the vicinity of  the 

five-beam diffracting point for a, = a~, P and Cu K(~, radiation, 
with [1]0] as the reference vector. At a I = a~,p the crystal is 
cubic. Otherwise, it is tetragonai, a~, P is the lattice constant for 
InP. 
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four-beam, 000, _006, [ 11, i15, simultaneous reflec- 
tions. Since the 333_reciprocal-lattice point lies on one 
side while [ 11 and 115 lie on the other side of the [006] 
rotation axis, the relative motion of the reciprocal- 
lattice points of the four-beam case with respect to the 
Ewald sphere has an opposite sense to that of the 
three-beam case. During the rotation about [006], 
because of these relative motions the four-beam case 
enters just after the three-beam case leaves the Ewald 
sphere• The calculated azimuthal positions relative to 
the reference vector [1[0] are given in Fig. 3. The 
inclination of the lines for the four-beam case is more 
pronounced than that for the three-beam case. For 
a x > a s, the ordering of the sequence of the points 
traversing the Ewald sphere is reversed: the three-beam 
enters just after the four-beam leaves the Ewald sphere. 
The cross point indicates the azimuthal position of the 
five-beam case for the InP substrate. 

(B)  E i g h t - b e a m ,  000, 006, 020, 026, 022, 0}4, 042, 
044, case 

The eight-beam reflection of InP, shown in Fig. 4, is 
decomposed into three four-beam reflections for 
InGaAsP.  They are, in the ord_ering of traversing the 
Ewald sphere, 000, 006, 022, 024; 000, 006, 020, 026; 
and 000, 006, 042, 044 for a± < as. The last four-beam 
case enters after the other two cases leave the Ewald 
sphere• For a a > a s, the ordering is reversed. The 

/ - - ~ 5 6 g Y - - - - ~  o~2 o~4 

.... _909_ __~____ . . . . . . .  0 0 6  

• 08 

Fig. 4. Projections of the eight-beam case on the plane perpen- 
dicular to the plane of incidence, Ps, of 006 and on the plane 
containing the eight reciprocal-lattice points. 
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Fig. 5. Calculated azimuthal angles tp vs a± in the vicinity of the 
eight-beam diffracting point for a, = a~np and Cu Ka~ radiation, 
with [ 1 f0] as the reference vector. 

calculated azimuthal ~0 are given as functions Of a± in 
Fig. 5, where a, was assumed to be unchanged. 

(C)  S i x - b e a m ,  000, 006, 2}2, 2}4, }22, }24, case 

As is shown in Fig. 6, the reflection circle C6 
containing the six reciprocal-lattice points for InP is 
symmetric about the plane of incidence, P6. That is, f16 
= 90 °. For InGaAsP materials, either 000, 006, 222, 
:224, set a, or 000, 006, 22.2, 2}4, set b, can enter or 
leave the Ewald sphere together. For a± < a s and 

Aa = 0, set a enters just after set b leaves the Ewald 
sphere• Therefore, the angle fl has the same value but a 
different sign for the two sets. The corresponding 
azimuths plotted versus  a± in Fig. 7, assuming Aa,  = O, 

show the symmetry about the line for a± = a s. 

Intensity 

For simplicity, we consider here a general four-beam 
simultaneous reflection from a double heterojunction 
plate, shown in Fig. 8. l~, l 2 and ml,  m2 are two 
transmitted (Laue) and two Bragg reflections, res- 
pectively. The incident beam is ll. The heterojunction is 
composed of two InP layers, a cladding (S~) and 
substrate ($2), and a quaternary epi-layer Q in 
between. The thicknesses for Sa, $2 and Q layers are 
d~, d 2 and d 0. The Q layer is assumed to have a large 
lattice mismatch to the substrate such that multiple 
diffraction cannot take place simultaneously for both 

224 C 6 222 

, ,ooo)  /ooo@oo  
\Plane of incidence 1 

224 222 

Fig. 6. Projections of the six-beam case on the plane perpendicular 
to the plane of incidence of 006 and on the plane containing the 
six reciprocal-lattice points. 
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Fig. 7. Calculated azimuthal angles (p vs a± in the vicinity of the 
six-beam diffracting point for a, = a~,p and Cu Ka~ radiation, 
with 11]01 as the reference vector. 
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InP and the quaternary layer at a given wavelength. 
When the layers S~ and $2 are in position to diffract an 
incident X-ray beam, an infinite number of reflections 
and transmissions take place. As illustrated in Figs. 9 
and 10, the diffraction process involves the following 
successive steps. (1) Diffraction of the incident beam l~ 
by layer S~ (Fig. 9a): beam l~ with an incident power 
Pt,(0) (assuming it is equal to unity at the entrance 
surface, x = 0) generates, at x = d~, two transmitted 
beams, l~ and l~, with powers equal to Ph(d~) and 
P~(d~); and, at x = 0, two zeroth-order reflected beams, 
rn~ and rn~, with reflection powers P°(0)  and P°~(0). 
Rt,(d~) and T~,(d~) are the reflection and transmission 
operators which will be determined later. (2) Ab- 
sorption of the two transmitted beams, l~ and l~, by the 
Q layer: the transmitted powers Pt,(d~) and P,~(d~) 
suffer ordinary absorption through the operator U~(d0) 
when traversing the Q layer. (3) Diffractions of l~ and l~ 
beams by layer S~ (Figs. 9b and c): in this step, multiple 
diffraction takes place for each of the incident l~ and l~ 
beams. They generate two sets of reflected and 
transmitted beams through the operators R h (d2), Th (d2) 
and R6(d2), T6(dz). For l~ beam, the total zeroth-order 
transmitted power, P~,(d~ + d o + d2), emerging from the 
lower surface of $l  (x = d~ + d o + d~), is the sum of the 
transmitted powers in the direction l~, generated by 
both incident l~ and l~ beams. It is similar for the l~ 
beam. For the reflected ml and m2, the total powers at 
the upper surface of $2 (x = d o + d~) are Pm,(d~ + do) 
and P,n~(d~ + do), which remain to participate in the 
next diffraction step. (4) Absorption of the two 
reflected beams m~ and m~ by the Q layer: the 
corresponding reflection powers, Pm,(dl + do) and 
Pm~(d~ + do), suffer absorption through the operator 
Urn(do) when beams rn~ and m2 traverse the Q layer. (5) 
Backward diffractions of reflected beams from layer Sl 
(Figs. 9d and e): this step is similar to step (3) except 
that beams m~ and m~ are now transmitted beams while 
l 1 and lz are the reflected ones. The first-order reflected 
powers, P~,(0) and p l (0) ,  at x = 0 ,  and the trans- 
mitted Pt,(d~) and Ph(d~) at x = d~, are generated by the 
transmission and reflection operators, Xm,(d~), Xm~(dl) 
and Dm,(d~), D,,,(d~), respectively. The repetition of 
steps (2), (3), (4) and (5) then follow to complete the 
diffraction process (Fig. 10). Since the steps (3) and (5) 

~i ml m2 

i ~" 0 ~  . . . . . .  I' X S2 

dtdo*-d,___,..L [ / . . . . .  \ \ ,  i ..... 

Fig. 8. Schematic representations of multiple diffraction from a 
sample containing lnP layers, S~ and $2, and a quaternary layer, 
Q. l~ and l~ are the transmitted beams, rn~ and m~ are the reflected 
o f l e s .  

are similar to step (1) and the steps (2) and (4) are 
merely the attenuation of diffracted beams by the Q 
layer, in the following we first look for the formulation 
for the operators T and R for step (1) and then 
generalize it for steps (3) and (5). 

Following Moon & Shull (1964), the differential 
equation describing the change in power in various 
beams as they traverse a crystal layer of thickness dx 
at depth x below the upper surface of layer S~ can be 
written as 

d P~ _ P~ 12 ¢_.., ( Qji PJ Qu2-P~ i + - -  + ~-" , (4) 
dx ~ j ~ )~. ] 

where the positive sign is for transmission and the 
negative one for reflection. Pi is the power in beam i, 

t I m~ 

, .... ........................................................... .... 
( .......................................................... ............ . . . . . . . . . .  

¢ / I -  _ ..................... ......................................................................... & . . . . . . .  .................. 

S ,  [____1:' . , / \ .......................... .......................... 

Fig. 9. Multiple diffractions from a double-layer system. Except for 
(a), only the incident beams are labeled in (b), (c), (d), (e), (f) 
and (g). 
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is the magnitude of the direction cosine of beam i 
relative to the crystal surface normal and g is the linear 
absorption coefficient. Qij, the effective reflectivity of 
reflection from planes (i-j), is defined as 

X N21Fs 12 
Qij = \ G 2-0 )ij W(AOtj)' (5) 

where W(AOij) is the mosaic distribution function of 
AOij, the deviation from the Bragg angle of ( i - j )  
reflection. N o is the number of unit cells per unit 
volume, and F s is the structure factor. An approximate 
solution of (1) for the power at x = d~ can be assumed 
to be a Taylor series expansion about x = 0, i.e. 

oo d~' 
Pi(d') = ~ -n-( P[n)(O) (6) 

n=0 
for i = l l, l 2, m I and m 2, where P!")(0) is the nth-order 
derivative with respect to x at x = 0, and P[°)(O) = 
Pi(0). For X-ray diffraction in highly absorbing 
materials with respect to the radiation used, the 
condition, gLt '~ 1 (where the path length L i = dl/~), 
for the validity of Taylor series expansion is usually not 
fulfilled. It is, however, possible to have a convergent 
Taylor series, with its value very close to the exact 
solution, by including high-order terms. Since deriva- 
tives are also a function of the powers of all reflections, 
the nth-order term can be written as (Parente & 
Caticha-Ellis, 1974) 

P[")(x) = Z Z ... Z Yij, YJtJ2 YJ2J, "'" YJn-,Jn P j . ( x ) ,  (7) 
J, J2 ,in 

where the j ' s  can be l~, 12, ml and mz, and 

Yjpjq~---SjqQjojq/~q forL4:. /"  q, 
(8) 

Yjojp-~ --SjoAjo/~, for jp= jq 

with 

and 

Aj, = 12 + Z Qj~ Jr (9) 
J,*Jp 

+ for transmitted beam 

S j, = _ for reflected beam. 

For simplicity, define 

co d[' 
ai'j.(dl)= Z ~ ~ Z "'" Z Yiiy, YJ, k""  YJ.-,J." (10) 

n=0 Jl J2 Jn-I 

By combining (6), (7) and (10), (6) has the following 
simple form: 

Pi(dl) = • ai, j(d,) Pj(O), (11) 
J 

where the sum is taken over all reflections involved in 
the process. With the boundary conditions at the upper 
and lower surfaces of layer S1, i.e. 

P t , ( 0 ) = l ,  P t , ( 0 ) = 0 ,  P m , ( d l ) = 0  and 

Pm2(d,)=O, 

the approximate solution of (4) can be obtained as 

Pt,(dl) 

Pt2(d2) 

Pm,(O) 

Pm~(O) 
where the vector 

= nt,(d,)Pt,(O), (12) 

with 

and 

Bh(d,) = ST,' (d,) V h (dl) 

I 
1 0 

0 1 
St , (d l )=  0 0 

0 0 

-at, m,(dl)- at, m2(dl) 
-a6 m, (dl) -- a6 m2(dl) 

--am, m,(dl)--am, m2 (dl) 

-am2,n,(dl)-am2,,,~(dl) 

Vt, (dl)= 

ah t, (dl) 1 
ah t, ( d l )  

am, t,(dl) I 
arn2t,(dl)J 

(13) 

The subscript l I in Bt,, Vt, and S h indicates that the 
incident beam is l~. Since multiple diffraction involves 
transmission and reflection, it would be convenient to 
decompose (12) into two parts, one for transmission 
and the other for reflection: 

and 

PL(dl) Lpt~(d ' = Th(d,)Pt,(0 ) 

[po (o)] = R l , ( d l ) P t l ( O ) ,  

where 

(14) 

(15) 

[bt, t,(dl)] Rh(dl)= Ibm, tl(dl) 1 (16) 
Tl'(dl) = bl2l,(dl)]' tbm21,(dl)l" 

The elements, the b's, can be obtained from (13). The 
superscript 0 of pO, pO and P° 2 means the zeroth order 
of reflection from the upper surface of layer S~. 
Hereafter, small letters with subscripts indicate the 
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elements of the corresponding vectors or matrices 
labeled with their capital letters. 

Similarly, T6(d2) and Rl2(d2) can be obtained by just 
substituting 11 and dl by 12 and d2 in the above 
expressions. For determining Xm, (dl) and Dm, (dl), (13) 
is replaced by 

Cm, (d l )=  S~n ~ (dl) Vrn, (dl), (17) 

where Vm,(dx) is equivalent to 
changing I~ to ml, and Sm,(dl) is defined as 

Sm,(dl) = 

Vl,(d~) except for 

I --al, /,(dl) --al, /2(dl) 0 0 

- a  6 l,(dl) --a 6 6(dl) 0 0 
--am, l, (dl) --am, 6 (dl) 1 0 
--am2/,(dl) --am2/2(dl) 0 1 

The operators Xm, (dl) and Din, (dl) are then obtained as 

Cm, m, (dl)] 
Xm'(d~) = L Cm2 m, (dl) j 

Ct, m,(dl)] 
Dm'(dl) = Cl2m,(dl)] (18) 

and 

and similarly for Xm,(d~) and Dm~(d,). By considering 
the ordinary absorption, the operators Ut(do) and 
Urn(do) have the following simple form: 

[ u 6 (d0)] 
Ul(do) = % (do) J 

Um~(do)J' 
(19) 

and 

where Ul(do) ---- exp(-#od0/~) , /t o being the linear 
absorption coefficient for the Q layer with respect to the 
radiation used. 

With the aid of Fig. 10 the reflected powers of m~ 
and m2 from the upper surface of layer $1 are obtained 
for various orders of reflection from (16), (18) and (19) 
as 

P°M(O) = Rl, (dl) It, (0) 

P~(O) = X(d,) Ru(d2) Tu(dl) It, (0) 

p2(O) = X(d,) [ Flu(d2) Du(d,)] Flu(dl) Tu(dl) el, (0) 

P3(0) = X(d,) [ Ru(d2) Du(d,)] 2 Ru(d,) Tu(d,) Pt, (0) 

and 

P,~(0) = X(d,) [R,,(d2) D,,(d,)] " - I  R,,(d~) "I'~(d,)Pt,(0) 

(20) 

for the nth-order reflection, where 

X(dl) = [Xm, (dl), Xm2(dl)] 

[Um,(d0) rm, t, (dz) Um,(do)rm, 6(d2)] 
Ru(d2) / / 

[Um2(do) rm2t,(d=) Um,(do) rm2h(d2)J 

Du(d 2) = [  ut,(do)d', m,(dl) u6(do)dl, m,(dl)] 

L ul2(do) dl2m,(dl) Ul,(do)dl, m, (dl)J 

Tu(dl) = Ull (do) I tl' 11 (dl) / 
[ t6 t, (dl) 

and tt,(O) = 1. The total reflected power is then 

oO 

E 
n = 0  

= R / ( d l )  -Jr- X ( d l ) [ l  M - -  F ( d 2 , d l ) ]  - 1 G ( d 2 , d l )  , 

(21) 

where [I M - F] -1 is the inverse matrix of I u - F, I u is 
the unit matrix, and F and G are defined as F(de,dl) = 
Ru(d2) Ou(d,) and G(d2,dl) = Flu(d2)Tu(dl). All the 
elements of F are much less than 1 for X-ray cases. 

Similarly, the transmitted powers of the nth order, 
emerging from the lower surface of layer $2, have the 
following form: 

P~.(d~ + d 0 + d2)= T(a2)[Ou(dl)Ru(a2)]"Tu(dl) , (22) 

where T(d2) = [T/,(d2), Tt2(d2)]. The total transmitted 
powers are 

OO 

P (d, + d0 + d , ) =  E 1V(d, + do + as) 
n = 0  

= r ( d 2 ) t k -  e(d,,d2)]-' 

x Tu(d~), (23) 

where E(d , ,d2)= Du(d~)Flu(d2)and det I EI ,~ 1 for 
X-ray cases. 

The above treatment is for multiple diffraction from 
a double-layer system, for example the DH sample with 
a lattice-mismatched Q layer. If the Q layer has the 
same lattice constant as the $1 and $2 layers, 
diffractions from a triple-layer system should be 
considered. This treatment is given in the Appendix. 
For simple SH samples, the treatment for double layers 
can be used by setting d~ equal to zero. Moreover, it is 
applicable to cases involving only a single crystal plate 
by assuming d~ = d E = 0 and d o equal to the thickness 
of the plate. 

Equations (21) and (23) can be generalized for any 
n-beam simultaneous reflection, in which nr trans- 
missions and n R reflections are involved. The corre- 
sponding dimensions of vectors R6, G and T u are 
(n R × 1), (n R × 1), and (n r x 1), and of matrices X, Flu, 
Du, T, I~, lu, F and E are (nRxnR), (nRxnr ) ,  
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(nr×nr), ( n r × n r ) ,  (nr×nT.), (nR×nR), (nR×nR) 
and (n r x nr), respectively. A computer program for 
calculating the peak intensities of a general n-beam case 
was written based on the above treatment with the 
mosaic distribution W =  1, assuming that the mosaic 
spreads of the samples are the same. 

There are a few remarks about the computing 
procedure which need to be mentioned. 

(1) Calculation for high-order derivatives and the 
polarization factors 

An iterative way of calculating a high-order deriva- 
tive from the next high-order one was originally derived 
for multiple diffraction of neutrons (Parente & Caticha- 
Ellis, 1974). For neutron diffraction, the fact that 
polarization need not be considered facilitates the 
iterative calculation. It is, however, difficult in X-ray 
cases to put correct polarization factors in the iterative 
method. The reason is that the polarization factor in Y~j 
of (7) depends not only on the (i-j) reflection but on the 
ordering in the sequence of the successive reflections, 
i.e. i-j1, Jl--J2, J2-J3 . . . .  (Zachariasen, 1965; Caticha- 
Ellis, 1969: Unangst & Melle, 1975). Hence, for each 
iterative cycle, a new polarization factor has to be put 
in the calculation since one more reflection is being 
added to the sequence of reflections. This is not only 
inconvenient but it is impossible for the program to 
handle correctly and simultaneously the polarization 
factors and the iteration. In order to overcome this 
difficulty, a test has been carried out with two different 
expressions for polarization factors; one is Pij = (1 + 
cos220u)/2 for a simple two-beam reflection i-j, the 
other is, from Zachariasen (1965), 

Pu(i-j) = ½[cos 2 20 t + cos 2 20j + (cos 20i_ J 

-- cos 20 i cos 20j) 2] (24) 

considering the sequence of first two successive 
reflections involved in a given multiple diffraction. It 
turned out that both gave almost the same 006 reflected 
intensities. Equation (24) was therefore used through- 
out the calculations. 

Tables for X-ray Crystallography, 1968) were used for 
temperature correction on structure factors at room 
temperature. The corrections due to anomalous scatter- 
ing were also included. 

Experimental 

(i) Divergent-beam experiment 

The divergent-beam experimental set-up described 
by Chang et al. (1979) was employed. The schematic 
representation is shown in Fig. 11. The 5 ° divergence 
facilitates the crystal alignment and permits the 
recording in one photograph of regions in reciprocal 
space included within a 5 ° azimuthal rotation. Films 
served as a detector for the 006 reflection. A Cu target 
was used. 

The samples consisted of an InP single crystal and 
six InGaAsP/InP heterojunction plates, with their large 
faces, having areas about 5 × 5 mm, cut normal to 
[001l. The thicknesses of the InP substrate and the 
InGaAsP epitaxial layers were about 530 and 5 ~rn, 
respectively. These six heterojunction samples had a 
common value, 0.007, for Xtoa and 0.0105, 0.0099, 
0.0091, 0.0083, 0.0077, 0.0064 for XAts, respectively. 

The experiment was performed by first setting the 
sample in position for the 006 reflection and then by 
rotating the sample around [006] to the pre-calculated 
azimuthal tp positions, i.e. 26.85, 0.0 and 19.79 ° for 
the above mentioned five-, six- and eight-beam reflec- 
tions, respectively, [ l i0]  being the reference vector. 
Thc exposure time for Kodak XRP films was 45 min 
when the Rigaku microfocus X-ray generator was 
operated at 40 kV, 0.3 A filament current and 0.5 mA 
beam current. 

(ii) Collimated-beam experiment 
The experimental set-up, similar to that reported by 

Renninger (1937), consisted of (1) a collimator which 
permitted the angular divergence of an incident beam to 
about 20' of arc, (2) a Philips goniostat adapted with a 

(2) Multiple diffraction involving surface reflection 
The five-beam case involves a surface reflection 333, 

whose diffracted wavevector is along the crystal 
surface. The direction cosine ~333 gives an infinite path 
length. However, as the surface reflection is a case 
between Laue transmission and Bragg reflection, 333 
can be treated either as a Laue or as a Bragg reflection 
with a given Yaaa very close to zero in calculation. 

(3) Temperature and anomalous scattering corrections 

The Debye parameters, Bin = 0.624, B v = 0.591 
(Post, 1975a) and BoaAs = 0 .60A 2 (International 

~ lm 

Crystal 
Fig. 11. Schematic representation of the divergent-beam experi- 

mental set-up. 
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Rigaku four-circle goniometer head, (3) a Spex driving 
system used to rotate a crystal around its surface 
normal, and (4) a scintillation counter. The distance 
between the Cu target and the sample was 200 mm. In 
all, an InP crystal, two SH samples, 20 and 55, and two 
DH samples, 22 and 84, were investigated. The 
thicknesses for the quaternary epilayers, InP cladding 
layers and substrate are listed in Table 1. The Ga and 
As concentrations, x and y, in solid composition at the 
quaternary compound layers, the corresponding lattice 
constants, and the linear absorption coefficients with 
respect to Cu Ka~ and Cu Ka 2 are given in Table 2. 

The sample was first aligned for 006 reflection. A 
0-20  scan (Fig. 12) was taken to locate the angular 
positions for 006 reflection peaks for Cu Ka~ and Cu 
Kct2 radiation from both the substrate and quaternary 
layers. The sample was then set at the corresponding 
Bragg angle, 0 B, for either the substrate or the 
quaternary layer, and rotated around [006]. As 
secondary reflections entered and left the Ewald sphere, 
the resultant interaction among reflections within the 
crystal gave rise to variations in the intensity of the 
primary, 006, reflection. Figs. 13, 14 and 15 show the 
45 ° asymmetric portion of multiple diffraction patterns 
for the InP substrate and samples 20 and 22. Their 
Bragg angles were set at the positions having maxi- 
mum intensities in the 006 0-20  scans for Cu Ka~ and 
Cu Ka 2 radiation, shown in Fig. 12. Note that, for 20 
and 22, the 006 reflection peaks from InP for Cu Ka2 
and from the quaternary layer for Cu Ka~ overlap 
owing to beam divergence and the differences in lattice 
constant between the quaternary materials and InP. In 
Figs. 13, 14 and 15, only the five- and eight-beam cases 
have notable intensities above the 006 reflection 
background. The diffracted peak intensity for each of 
these two cases was measured for 100 s for the five 
samples with Cu Ka~ and Cu Ka 2 radiation. 

Table 1. The thicknesses of layers, in ~tm, for the 
samples studied 

Sample 

Layer InP 20 55 22 84 

InP-cladding d~ 0 0 0 2.0 2.0 
Quaternary d o 0 2.0 2.0 1.6 0.3 
Substrate d2 530.0 530.0 530.0 530.0 530.0 

Results and discussion 

(i) Divergent-beam experiment 

Figs. 16(a) and (b) show the enlarged (x4)  photo- 
graphic images of the five-beam simultaneous diffrac- 
tion for the InP substrate and of the three- and 
four-beam reflections for the InGaAsP/ InP  with X/s 
equal to 0.0083. The vertical lines are the 006 reflection 
lines from the substrate and epitaxial layer. It is known 
that a± varies continuously along the interface normal. 

:: (a~ i o0~  ' C u K a !  i I . (0):  ! : : : : ~c) 
: : . 42  kV,  16 m A  - 7  = . ; : J '. i 
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r ......................... T ...... ~ . . . . . .  

, . . . 
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....... ;IT --T ............. 

IO4.24  ° 1 0 3 . 8 9  ° 
2 0  

Fig. 12. 0-20 scan of 006 reflections for Cu Ka~ and Cu Ka2 
radiation from (a) an InP substrate, (b) sample 20 and (c) sample 
22. In (b) and (¢), the central peaks are the overlapped peaks of 
Cu Ka~ from the quaternary layer. 
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Fig. 13. 006 multiple diffraction patterns for Cu Ka~ from InP 
layers for (a) an InP substrate, (b) sample 20 and (c) sample 22. 
Intensitv I in counts s-L 

Table 2. The solidus atomic concentrations, x and y, of gallium and arsenic in Q layers, their lattice constants a 
and linear absorption coefficients lu 

Sample 

InP 20 55 22 84 

x 0 0.21 0.20 0.18 0.26 
y 0 0.43 0.45 0.45 0.56 
a (A) 5.8696 5.8644 5.8723 5.8806 5.8696 
,u(Cu Kay) (ram -~) 98.779 88.840 89.493 90.645 86.521 
,u(Cu Kay) (mm -~) 99.568 89.357 90.031 91.191 87.035 
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A broad reflection band is common for the epi-layers. 
The cross-hatched pattern on the layer lines is a 
superposition of the surface morphology on the 
diffraction image. The directions parallel and per- 
pendicular to the 006 reflection lines represent the 
angles ~ and AS. A8 is the angular deviation from the 
Bragg angle 0 n of the 006 reflection. The image shown 
in Fig. 16(b) resembles the portion for a± < as in Fig. 3. 
The line for 000, 006, 333 is too weak to be seen. The 
effect of the variation in a. on the diffraction image is 
so small that it cannot be detected by visual inspection. 
The inclination of the multiple diffraction lines with 
respect to the 006 line is because the fl angles are not 
equal to zero. Given that the quaternary compound 
with X t ,  = 0.0083 is less perfect than the InP substrate, 
as a single crystal is concerned, the intersection, shown 
in Fig. 16(a), between the diffraction lines of the 006 
reflection and the four-beam reflection for InP is 
clearer than that shown in Fig. 16(b) for the quaternary 
layer. 

_ _ . : .~ ' . ., 

0 1 N R E  
. . . . . .  34001 , , , _ _ ~ ( D E G  3 
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Fig. 14. Multiple diffraction patterns of (a) 006 reflection for Cu 
Ka2 from InP substrate, (b) overlapped 006 reflection for Cu Ka2 
from the InP layer and Cu Ka~ from the Q layer for sample 20 
and (c) same as (b) but for sample 22. 

Figs. 16(c) and (d) are the diffraction images of the 
eight-beam case for the substrate and of the three 
four-beam cases for the epi-layer. According to Moon 
& Shull (1964), the diffracted intensities of these 
four-beam cases roughly depend on the square of the 
product of the structure factors of the secondary 
reflections and of their coupling reflections to 006. 
Since 

I Fo~ 2 Fo~i 12: IF02 ° Fo2g 12: i Fo44 Fo4~ 12 = 2.5 : 1.7 : 1.0, 

only the diffraction lines for 000, 006, 022, 024 and 
000, 006, 020, 026 appeared. 

Referring to (3), it would, in principle, be possible to 
draw the information for Aa, and Aa.t simultaneously 
from the line separation of the above mentioned 
four-beam reflections. By comparing Fig. 5 with Fig. 7, 
we see, however, that the line separation in Fig. 5 is 
smaller than that of Fig. 7 for a given a±. The 
decomposition of the six-beam into two four-beam 
reflections might be more proper for the simultaneous 
determination of Aa, and Aa.t. In Fig. 17, we show the 
images of the 006 reflection in the vicinities of the 
six-beam case for InP and the four-beam cases for 
InGaAsP for several values of XAts . The corresponding 
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Fig. 15. 006 multiple diffraction patterns for Cu Ka2 from the Q 
layer for (a) sample 20 and (b)saml~le 22. The peak at tp = 0 is 
due to the six-beam, 000, 006, 222, 224, 2.22, 224 case. 
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Fig. 16. The 006 reflection images in the vicinities of (a) the 
five-beam and (c) the eight-beam case for InP and of their 
corresponding (b) t-beam case and (d) four-beam cases for 
InGaAsP epi-layer with )tAts = 0.0083 and X~. = 0.0007. Cu Kai 
lines of (b) and (d) are on the left of Cu Ko~ lines. 
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Aa,, and Aa± for each XAts can be obtained from the 
equation 

Aft = 0.25 [Aa, - Aa± ] (25) 

deduced from (3) for the six-beam case. Aa± and Aft 
can be determined from Aa±/a s = - c o t  8 n AO and from 
the angular separation between the two four-beam 
diffraction lines. 

In Fig. 18, the measured Aa± and Aa, are given as a 
function of XAt~ with X/a -- 0.0007. They resemble the 
curves obtained by Oe et al. (1978) for X~s and Xta 
one order of magnitude higher. The errors indicated here 
were estimated from the widths of the reflection lines. 

(a) (b) 

llt 
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(ii) Collimated-beam experiment 

The observed and calculated intensities from the 
quaternary and InP layers are listed in Tables 3 and 4 
for the eight-beam and five-beam cases, respectively. 
Comparison of the diffracted intensities from different 
samples can be made from I / I  (22) columns, where the 
intensity diffracted from sample 22 was treated as 
unity. Better agreement between observed and cal- 
culated intensities can be seen in eight-beam cases than 
in five-beam cases. The choice of 10 lam (2  1//~) for d2 
seems more appropriate for calculating diffracted 
intensities than the choice of the thicknesses such that 

~ ,utdl = 1 
l 

where the summation is over all layers. 
Comparison of the diffracted intensity of the 

eight-beam case, with that of the five-beam from the 
same sample can be made from Table 5. AI s and AI 5 
are the differences in the 006 reflected intensity between 
two-beam 006 reflection and the five- and eight-beam 
cases, respectively. Tables 5(A) and 5(B) show 
qualitative agreements for 15/18 and AIs/AI5 between 
the experimental and theoretical results. The agree- 
ment between the observed and calculated AIs/AI 5 in 
Table 5(C) is rather poor owing to the relatively high 
background of weak reflections from the Q layers, and 
the uncertainty in their thicknesses. The former can 
also be seen from the diffraction patterns shown in Fig. 
15. Relative standard deviations of AIs/AI 5 average to 
about 15% for the values listed in Tables 5(A) and 5(B) 
and 100% for Table 5(C). 

The main sources of errors are thought to be due to 
(a) variation of the surface conditions of the samples 
and (b) the absorption. As is known, the surface 
morphologies of LPE layers vary as their lattice 

(e) (f) 

;! 

Fig. 17. The 006 reflection images in the vicinities of (a) the 
six-beam case for InP and of the four-beam case for InGaAsP 
with XAts equal to: (b) 0-0105, (c) 0.0099, (d) 0.0091, (e) 0.0083, 
(J0 0.0077 and (g) 0.0064, where X~, = 0.0007. Cu Ka~ lines 
are on the left of Cu Ka 2 lines. 
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Fig. 18. Measured AaMi and Aa± for various X~s, where X~a = 

0.0007. 



886 SIMULTANEOUS BRAGG DIFFRACTION OF X-RAYS 

Table 3. Calculated (Icalc) and observed (lobs) 006 reflected intensities for the eight-beam case 

27 represents ~i gl d~ = 1. 

I¢a,¢ (lO-s) 1/1 (22) 
(A) Reflections from InP for Cu Kal radiation 

Sample lobs(counts ) d 2 ~ 10 ~m Z Obs. C~c.(IO ~m) Calc.(X) 

InP 967 906 0.7185 0.7201 1.01 1.13 1.21 
20 701 322 0.5036 0-4799 0-73 0-79 0.81 
55 691 543 0.5023 0.4785 0.72 0.79 0.80 
22 955 697 0.6341 0.5961 1.00 1.00 1.00 
84 1 010 734 0.7346 0.7084 1.06 1.16 1.19 

(B) Reflections from InP for Cu Ka2 and from Q layers for Cu Kal 

Iealc (10-s) 1/1 (22) 

Sample Iobs(counts) d 2 = 101am X Obs. C~c.(lOlam) C~c.(X) 

InP 484 207 0.3905 0.3905 0.84 0.91 0.96 
20 524 682 0.4175 0.4042 0.91 0.98 1.00 
55 512 728 0.4144 0.4011 0.89 0.97 0.99 
22 577 154 0.4263 0.4053 1.00 1.00 1.00 
84 520 340 0.3991 0-3905 0-90 0-94 0-96 

(C) Reflections from Q layers for Cu Ka 2 

1/1 (22) 

Sample lob s ~alc(10 -6) Obs. C~c. 

20 118 713 0.7860 1.59 1.76 
55 101 425 0.7730 1.36 1.74 
22 74 731 0.4454 1.00 1.00 

Table 4. Calculated (Icatc) and observed (lobs) 006 reflected intensities for the five-beam case 

(A) Reflections from InP for Cu Kal radiation 

27 represents ~ gt d t = 1. 

Ica,c (10-s) 1/1 (22) 

Sample lobs(COunts ) d2= 10~un Z Obs. Calc.(10gm) C~c. (Z)  

InP 977 426 0.7190 0.7205 0.99 1.12 1.21 
20 740 562 0.5457 0.4888 0.75 0.85 0.82 
55 705 521 0.5442 0.4879 0.72 0-85 0.82 
22 984 039 0.6391 0.5966 1.00 1-00 1.00 
84 1 045 112 0.7410 0.7091 1.06 1-11 1.19 

(B) Reflections from InP for Cu Ka 2 and from Q layers for Cu Ka 1 

Ieal¢ (10-5) 1/1 (22) 

Sample Iobs(COUnts) d 2 = 10 ~m Z Obs. C~c . (10gm)  Calc.(X) 

InP 488 303 0.3908 0.3908 0-81 0.91 0.96 
20 557 430 0.4417 0.4087 0.92 1.03 1.01 
55 555 194 0-4385 0.4052 0-92 1.02 1.00 
22 606 592 0.4293 0.4055 1.00 1.00 1.00 
84 537 462 0.4086 0.3910 0.89 0.95 0.96 

Sample 

20 
55 
22 

/obs 

129 733 
108 349 
86 412 

Ieate (10-6) 

0.7870 
0.7740 
0.4458 

(C) Reflections from Q layers for Cu Ka 2 

1/1 (22) 

Obs. Calc. 

1.50 1.77 
1.25 1-74 
1-00 1.00 
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Table 5. Calculated and observed 15/18 and AIs/AI5 

The thickness d 2 is 10 lam and S represents Zi #~di = 1. 

(A) Reflections from InP for Cu Ka~ 

15/18 AIs/AI5 

However, the investigation of dynamical diffraction 
aspects as applied to LPE multi-layer systems is in 
progress and will be reported later. 

Conclusion 

Sample Obs. Calc. (10 ~tm) Calc. (27) Obs. Calc. 

InP 1.01 1.00 1.00 0.70 0.71 
20 1.06 1.08 1.02 0.75 0.71 
55 1.02 1.08 1.02 0.61 0.71 
22 1.03 1.01 1-00 0.63 0.70 
84 1.03 1.01 1.00 0.60 0.69 

(B) Reflections from InP for Cu Ka 2 and from Q layers for Cu Ka~ 

I5/I8 AIs/AI5 

Sample Obs. Calc. (10 ~ma) Calc. (27) Obs. Calc. 

InP 1.01 1.00 1.00 0.70 0.70 
20 1.06 1.06 1.01 0.65 0.56 
55 1.08 1-06 1.01 0-51 0.55 
22 1.05 1.01 1.00 0.54 0.62 
84 1.03 1.02 1.00 0.63 0.74 

(C) Reflections from Q layers for Cu Ka 2 

AIs/AI5 

Sample (I5/I8)ob s (I5/I8)¢at¢ Obs. Calc. 

20 1.09 1.00 0.67 0.32 
55 1.07 1.00 0.71 0.30 
22 1.16 1.00 0.52 0.33 

constants change. In principle, better surface 
morphologies are obtained in quaternary layers with 
less lattice mismatch to the substrate. According to 
Evans, Hirsch & Kellar (1948), the reflected intensities 
are affected a great deal by the conditions of the crystal 
surface. The influence of the surface conditions on the 
measured intensities in the present work is unavoidable 
since the surface conditions of the samples used are 
different from each other owing to the different lattice 
constants of the quaternary materials listed in Table 2. 
This can be observed from the variation of reflected 
background shown in Figs. 13, 14 and 15. Moreover, 
since the investigated five-beam cases involve a surface 
reflection, their reflected intensities were then affected 
by the surface conditions in degree greater than those 
for the eight-beam cases. 

The other source of error is absorption. The 
theoretical treatment described above considered the 
absorption as the same for any n-beam case. That is, p 
is always equal to the value of the normal linear 
absorption coefficient. As a matter of fact, the resultant 
interaction among the n diffracted beams may change 
the absorption. Usually, the resultant absorption 
coefficient in transmission cases is lower than the 
normal value. In order to take care of this fact, a 
dynamical theory of X-ray diffraction should be 
employed. This is beyond the scope of this paper. 

From the above photographic investigation, it is shown 
that although the concentration X~a is as low as 0.07% 
and Xgts is less than 1%, the corresponding lattice 
mismatch between the InP substrate and InGaAsP 
layer affects enormously the images of simultaneous 
Bragg diffraction from this LPE heterojunction system. 
Consequently, the herein-described experiment provides 
a method of determining Aa, and Aa; from a single 
divergent-beam X-ray photograph with multiple simul- 
taneous Bragg diffraction. Clearly, this method is 
applicable to any [001] InGaAsP quaternary layer with 
high X~a and XA~s . However, for [ 111 ]-oriented 
quaternary materials, one should look for other multiple 
diffraction sets for such investigations. 

In the counter detection study, we have observed the 
effect of the concentrations, x and y, of the quaternary 
layer on the reflected intensities of simultaneous 
diffractions. This effect was qualitatively accounted for 
with the theory derived above. If the experimental 
conditions can be improved and the dynamical effects 
of diffraction can be taken into account, quantitative 
analysis on the concentrations, x and y, of epitaxial 
materials from the reflected intensities of simultaneous 
diffraction of X-rays could be possible. 

The financial support from CNPq, BID and Telebrfis 
is gratefully acknowledged. 

APPENDIX 

Diffracted powers of multiple diffraction from a 
triple-layer system 

For simplicity, a sample, as shown in Fig. 19, is 
assumed to have two InP layers, $1 and $3, a 
quaternary layer $2, and two absorbing layers, A1 and 
Az, of the same material. Their thicknesses are dl, d2 
and d 3 for layers S~, $2 and $3, and do for layers A1 
and A z, respectively. The quaternary layer has the 
same lattice constant as InP. Therefore, multiple 
diffraction takes place for InP and the quaternary layer 
simultaneously. The diffracted beams suffer absorption 
when traversing the A~ and A2 layers. Their linear 
absorption coefficient is /~a" As in the ease of a 
double-layer system, we use, here, the same vectors Tt 
and Rt for forward diffraction, including transmissions 
and reflections, and vectors Dm and X,, for backward 
diffraction through a layer. Because of the additional 
layer $3, the combinations of the reflected beams, m~ 
and mz, from layer $3 after transmitting through layer 



888 SIMULTANEOUS BRAGG D I F F R A C T I O N  OF X-RAYS 

S 2 with those reflected by layer $2 should be regarded 
as the new incident beams for layer S~ for backward 
diffractions. Similarly, the diffracted beams, l~ and 12, of 
the backward diffractions from layers S~ and $2 should 
be summed up and form the new incident beams for 
forward diffractions through layer S 3. The block 
diagram taking these into consideration is shown in 
Fig. 20. Referring to this diagram, the total reflected 
powers from the upper surface of St, as well as the 
transmitted ones impinging from the lower surface of 
S 3, are obtained, after a few manipulations, as 

P~(0) =Wm + X(d0 MI[IM-- M21-' Zl (26) 
and 

Pr(d~ + d 2 + d 3 + 2d0) 

= Wl + T(d3) M3[IL -- M41 -I Z2, (27) 

°-I,, . . . .  . . . .  

$,, 
d~+ do+d ~ 

At  
d' "*"di" ~"~° [ . . . .  ] / " ' ,  ~ S. 

Fig. 19. Multiple diffraction from a triple-layer system. 
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respectively, where 

W m = Rt,(d~) + X(d 1) G(dE,d~) + X(dl) Za(da,d2,d~) 

Wt = T(d3)K(d2,dl) + T(da)Z4(da,d2,dl) 

Z 1 = Z 2 = 
Z4 Z3 

Z 3 --~ F(d2,dl)G(d2,dl) + O(d2,d3)K(d2,dl) 

= E(d2,d3) K(d2,dl) + d(d2,dl) G(d2,dl) 

a s  

Z 4 

M~ = [F(d2,d~) O(d2,d3)] 

F:(de,d,) O(d2,d3) ] 

M 2= d(d2,d~) E(dE,da) J 

M a = [E(dE,da) d(d2,dl)] 

E(d2,d3) d(d2,dl)] 

MR= O(d2,d3) F(dE,d~)J" 

with 

The matrices O and d and the vector K are defined 

O(d2,d3) -- Xu(d2) I:lu(d3) 

d(d2,d,) = Tu(d2) Du(di) 

K(d2,d,) = T,,(d2) T,,(d,), 

ut, (do) tt, ,n, (d) ut, (do) tt, m, (d)] 

Tu(d)= uz2(do) tt2m2(d ) Ul2(do) t6 m2(d) ].1 

The absorption coefficient #a is used for u's. The 
dimensions are n R × 1 for W m, Z 3, n r × 1 for Wt, Z4, 
(n R + nr) x 1 for Z 1, Z2, (n R + nr) × (nR + nr) for  M2, 
M4, nk x (nR + nr) for M 1 and nr x (nR + nr) for M 3. 
Note that the structure factors of the quaternary layer 
should be used in calculating the terms involving dz. 

For lattice-matched DH samples, for example 84, 
(26) and (27), with d o = 0, were used to obtain the 
diffracted powers. 
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Abstract 

In the most general case the orientation distribution of 
crystals in a polycrystalline sample is to be described 
by a function of orthogonal transformations which 
splits up into two functions of rotations corresponding 
to right- and left-handed crystals. The properties of 
these functions are influenced by crystal and sample 
symmetry. The rotational subgroup of crystal sym- 
metry leads to symmetry relations which may be 
written in the form of selection rules. Elements of the 
second kind of the crystal symmetry give rise to a 
determinability condition, according to which the 
texture function may be split into a part J~(g) which can 
be determined from polycrystal diffraction experi- 
ments and a part f (g)  which cannot. The deter- 
minability condition may take on three different forms 
according to whether the crystal symmetry contains a 
centre of inversion, a mirror plane or a 4 inversion axis. 
In the case of normal scattering the Laue symmetry is 
to be considered instead of the true crystal symmetry. 
The sample symmetry is to be described by a 
black-white or Shubnikov group containing four kinds 
of elements which give rise to four kinds of symmetry 
conditions in the function f(g). The sample symmetry 
may be a conventional one consisting of one-to-one 
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relationships between crystal orientations. It may, 
however, also be a non-conventional one defined by an 
integral relation between an infinite number of crystal 
orientations. 

1. Introduction 

The texture of a polycrystalline material is defined as 
the orientation distribution function f (g)  which de- 
scribes the orientation density or relative f requencyfof  
crystallites having the orientation g with respect to the 
sample coordinate system. The crystal orientation g has 
usually been defined as a rotation which brings the 
sample coordinate system into coincidence with the 
crystal coordinate system (or vice versa). 

This definition of crystal orientation is, however, not 
general enough since it does not allow one to deal with 
enantiomorphic crystal classes consisting of right- and 
left-handed crystal forms. But also in the higher 
symmetric classes this definition is not sufficient in as 
far as it does not allow one to take symmetry elements 
of the second kind of the crystal symmetry correctly 
into account, i.e. mirror planes, inversion axes, and the 
centre of symmetry. It is thus necessary to generalize 
the definition of crystal orientation to orthogonal 
© 1981 International Union of Crystallography 


